aboutsummaryrefslogtreecommitdiff
blob: 043ea849c327cafe18d3f3b79f1829ecc4d6e4de (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
from cffi import FFI

ffi = FFI()
ffi.cdef("""
typedef short PyInt16;

int ratecv(char* rv, char* cp, size_t len, int size,
           int nchannels, int inrate, int outrate,
           int* state_d, int* prev_i, int* cur_i,
           int weightA, int weightB);

void tostereo(char* rv, char* cp, size_t len, int size,
              double fac1, double fac2);
void add(char* rv, char* cp1, char* cp2, size_t len1, int size);

/* 2's complement (14-bit range) */
unsigned char
st_14linear2ulaw(PyInt16 pcm_val);
PyInt16 st_ulaw2linear16(unsigned char);

/* 2's complement (13-bit range) */
unsigned char
st_linear2alaw(PyInt16 pcm_val);
PyInt16 st_alaw2linear16(unsigned char);


void lin2adcpm(unsigned char* rv, unsigned char* cp, size_t len,
               size_t size, int* state);
void adcpm2lin(unsigned char* rv, unsigned char* cp, size_t len,
               size_t size, int* state);
""")

# This code is directly copied from CPython file: Modules/audioop.c
_AUDIOOP_C_MODULE = r"""
typedef short PyInt16;
typedef int Py_Int32;

/* Code shamelessly stolen from sox, 12.17.7, g711.c
** (c) Craig Reese, Joe Campbell and Jeff Poskanzer 1989 */

/* From g711.c:
 *
 * December 30, 1994:
 * Functions linear2alaw, linear2ulaw have been updated to correctly
 * convert unquantized 16 bit values.
 * Tables for direct u- to A-law and A- to u-law conversions have been
 * corrected.
 * Borge Lindberg, Center for PersonKommunikation, Aalborg University.
 * bli@cpk.auc.dk
 *
 */
#define BIAS 0x84   /* define the add-in bias for 16 bit samples */
#define CLIP 32635
#define SIGN_BIT        (0x80)          /* Sign bit for a A-law byte. */
#define QUANT_MASK      (0xf)           /* Quantization field mask. */
#define SEG_SHIFT       (4)             /* Left shift for segment number. */
#define SEG_MASK        (0x70)          /* Segment field mask. */

static PyInt16 seg_aend[8] = {0x1F, 0x3F, 0x7F, 0xFF,
                              0x1FF, 0x3FF, 0x7FF, 0xFFF};
static PyInt16 seg_uend[8] = {0x3F, 0x7F, 0xFF, 0x1FF,
                              0x3FF, 0x7FF, 0xFFF, 0x1FFF};

static PyInt16
search(PyInt16 val, PyInt16 *table, int size)
{
    int i;

    for (i = 0; i < size; i++) {
        if (val <= *table++)
            return (i);
    }
    return (size);
}
#define st_ulaw2linear16(uc) (_st_ulaw2linear16[uc])
#define st_alaw2linear16(uc) (_st_alaw2linear16[uc])

static PyInt16 _st_ulaw2linear16[256] = {
    -32124,  -31100,  -30076,  -29052,  -28028,  -27004,  -25980,
    -24956,  -23932,  -22908,  -21884,  -20860,  -19836,  -18812,
    -17788,  -16764,  -15996,  -15484,  -14972,  -14460,  -13948,
    -13436,  -12924,  -12412,  -11900,  -11388,  -10876,  -10364,
     -9852,   -9340,   -8828,   -8316,   -7932,   -7676,   -7420,
     -7164,   -6908,   -6652,   -6396,   -6140,   -5884,   -5628,
     -5372,   -5116,   -4860,   -4604,   -4348,   -4092,   -3900,
     -3772,   -3644,   -3516,   -3388,   -3260,   -3132,   -3004,
     -2876,   -2748,   -2620,   -2492,   -2364,   -2236,   -2108,
     -1980,   -1884,   -1820,   -1756,   -1692,   -1628,   -1564,
     -1500,   -1436,   -1372,   -1308,   -1244,   -1180,   -1116,
     -1052,    -988,    -924,    -876,    -844,    -812,    -780,
      -748,    -716,    -684,    -652,    -620,    -588,    -556,
      -524,    -492,    -460,    -428,    -396,    -372,    -356,
      -340,    -324,    -308,    -292,    -276,    -260,    -244,
      -228,    -212,    -196,    -180,    -164,    -148,    -132,
      -120,    -112,    -104,     -96,     -88,     -80,     -72,
       -64,     -56,     -48,     -40,     -32,     -24,     -16,
    -8,       0,   32124,   31100,   30076,   29052,   28028,
     27004,   25980,   24956,   23932,   22908,   21884,   20860,
     19836,   18812,   17788,   16764,   15996,   15484,   14972,
     14460,   13948,   13436,   12924,   12412,   11900,   11388,
     10876,   10364,    9852,    9340,    8828,    8316,    7932,
      7676,    7420,    7164,    6908,    6652,    6396,    6140,
      5884,    5628,    5372,    5116,    4860,    4604,    4348,
      4092,    3900,    3772,    3644,    3516,    3388,    3260,
      3132,    3004,    2876,    2748,    2620,    2492,    2364,
      2236,    2108,    1980,    1884,    1820,    1756,    1692,
      1628,    1564,    1500,    1436,    1372,    1308,    1244,
      1180,    1116,    1052,     988,     924,     876,     844,
       812,     780,     748,     716,     684,     652,     620,
       588,     556,     524,     492,     460,     428,     396,
       372,     356,     340,     324,     308,     292,     276,
       260,     244,     228,     212,     196,     180,     164,
       148,     132,     120,     112,     104,      96,      88,
    80,      72,      64,      56,      48,      40,      32,
    24,      16,       8,       0
};

/*
 * linear2ulaw() accepts a 14-bit signed integer and encodes it as u-law data
 * stored in a unsigned char.  This function should only be called with
 * the data shifted such that it only contains information in the lower
 * 14-bits.
 *
 * In order to simplify the encoding process, the original linear magnitude
 * is biased by adding 33 which shifts the encoding range from (0 - 8158) to
 * (33 - 8191). The result can be seen in the following encoding table:
 *
 *      Biased Linear Input Code        Compressed Code
 *      ------------------------        ---------------
 *      00000001wxyza                   000wxyz
 *      0000001wxyzab                   001wxyz
 *      000001wxyzabc                   010wxyz
 *      00001wxyzabcd                   011wxyz
 *      0001wxyzabcde                   100wxyz
 *      001wxyzabcdef                   101wxyz
 *      01wxyzabcdefg                   110wxyz
 *      1wxyzabcdefgh                   111wxyz
 *
 * Each biased linear code has a leading 1 which identifies the segment
 * number. The value of the segment number is equal to 7 minus the number
 * of leading 0's. The quantization interval is directly available as the
 * four bits wxyz.  * The trailing bits (a - h) are ignored.
 *
 * Ordinarily the complement of the resulting code word is used for
 * transmission, and so the code word is complemented before it is returned.
 *
 * For further information see John C. Bellamy's Digital Telephony, 1982,
 * John Wiley & Sons, pps 98-111 and 472-476.
 */
static unsigned char
st_14linear2ulaw(PyInt16 pcm_val)       /* 2's complement (14-bit range) */
{
    PyInt16         mask;
    PyInt16         seg;
    unsigned char   uval;

    /* The original sox code does this in the calling function, not here */
    pcm_val = pcm_val >> 2;

    /* u-law inverts all bits */
    /* Get the sign and the magnitude of the value. */
    if (pcm_val < 0) {
        pcm_val = -pcm_val;
        mask = 0x7F;
    } else {
        mask = 0xFF;
    }
    if ( pcm_val > CLIP ) pcm_val = CLIP;           /* clip the magnitude */
    pcm_val += (BIAS >> 2);

    /* Convert the scaled magnitude to segment number. */
    seg = search(pcm_val, seg_uend, 8);

    /*
     * Combine the sign, segment, quantization bits;
     * and complement the code word.
     */
    if (seg >= 8)           /* out of range, return maximum value. */
        return (unsigned char) (0x7F ^ mask);
    else {
        uval = (unsigned char) (seg << 4) | ((pcm_val >> (seg + 1)) & 0xF);
        return (uval ^ mask);
    }

}

static PyInt16 _st_alaw2linear16[256] = {
     -5504,   -5248,   -6016,   -5760,   -4480,   -4224,   -4992,
     -4736,   -7552,   -7296,   -8064,   -7808,   -6528,   -6272,
     -7040,   -6784,   -2752,   -2624,   -3008,   -2880,   -2240,
     -2112,   -2496,   -2368,   -3776,   -3648,   -4032,   -3904,
     -3264,   -3136,   -3520,   -3392,  -22016,  -20992,  -24064,
    -23040,  -17920,  -16896,  -19968,  -18944,  -30208,  -29184,
    -32256,  -31232,  -26112,  -25088,  -28160,  -27136,  -11008,
    -10496,  -12032,  -11520,   -8960,   -8448,   -9984,   -9472,
    -15104,  -14592,  -16128,  -15616,  -13056,  -12544,  -14080,
    -13568,    -344,    -328,    -376,    -360,    -280,    -264,
      -312,    -296,    -472,    -456,    -504,    -488,    -408,
      -392,    -440,    -424,     -88,     -72,    -120,    -104,
       -24,      -8,     -56,     -40,    -216,    -200,    -248,
      -232,    -152,    -136,    -184,    -168,   -1376,   -1312,
     -1504,   -1440,   -1120,   -1056,   -1248,   -1184,   -1888,
     -1824,   -2016,   -1952,   -1632,   -1568,   -1760,   -1696,
      -688,    -656,    -752,    -720,    -560,    -528,    -624,
      -592,    -944,    -912,   -1008,    -976,    -816,    -784,
      -880,    -848,    5504,    5248,    6016,    5760,    4480,
      4224,    4992,    4736,    7552,    7296,    8064,    7808,
      6528,    6272,    7040,    6784,    2752,    2624,    3008,
      2880,    2240,    2112,    2496,    2368,    3776,    3648,
      4032,    3904,    3264,    3136,    3520,    3392,   22016,
     20992,   24064,   23040,   17920,   16896,   19968,   18944,
     30208,   29184,   32256,   31232,   26112,   25088,   28160,
     27136,   11008,   10496,   12032,   11520,    8960,    8448,
      9984,    9472,   15104,   14592,   16128,   15616,   13056,
     12544,   14080,   13568,     344,     328,     376,     360,
       280,     264,     312,     296,     472,     456,     504,
       488,     408,     392,     440,     424,      88,      72,
       120,     104,      24,       8,      56,      40,     216,
       200,     248,     232,     152,     136,     184,     168,
      1376,    1312,    1504,    1440,    1120,    1056,    1248,
      1184,    1888,    1824,    2016,    1952,    1632,    1568,
      1760,    1696,     688,     656,     752,     720,     560,
       528,     624,     592,     944,     912,    1008,     976,
       816,     784,     880,     848
};

/*
 * linear2alaw() accepts an 13-bit signed integer and encodes it as A-law data
 * stored in a unsigned char.  This function should only be called with
 * the data shifted such that it only contains information in the lower
 * 13-bits.
 *
 *              Linear Input Code       Compressed Code
 *      ------------------------        ---------------
 *      0000000wxyza                    000wxyz
 *      0000001wxyza                    001wxyz
 *      000001wxyzab                    010wxyz
 *      00001wxyzabc                    011wxyz
 *      0001wxyzabcd                    100wxyz
 *      001wxyzabcde                    101wxyz
 *      01wxyzabcdef                    110wxyz
 *      1wxyzabcdefg                    111wxyz
 *
 * For further information see John C. Bellamy's Digital Telephony, 1982,
 * John Wiley & Sons, pps 98-111 and 472-476.
 */
static unsigned char
st_linear2alaw(PyInt16 pcm_val) /* 2's complement (13-bit range) */
{
    PyInt16         mask;
    short           seg;
    unsigned char   aval;

    /* The original sox code does this in the calling function, not here */
    pcm_val = pcm_val >> 3;

    /* A-law using even bit inversion */
    if (pcm_val >= 0) {
        mask = 0xD5;            /* sign (7th) bit = 1 */
    } else {
        mask = 0x55;            /* sign bit = 0 */
        pcm_val = -pcm_val - 1;
    }

    /* Convert the scaled magnitude to segment number. */
    seg = search(pcm_val, seg_aend, 8);

    /* Combine the sign, segment, and quantization bits. */

    if (seg >= 8)           /* out of range, return maximum value. */
        return (unsigned char) (0x7F ^ mask);
    else {
        aval = (unsigned char) seg << SEG_SHIFT;
        if (seg < 2)
            aval |= (pcm_val >> 1) & QUANT_MASK;
        else
            aval |= (pcm_val >> seg) & QUANT_MASK;
        return (aval ^ mask);
    }
}
/* End of code taken from sox */

/* Intel ADPCM step variation table */
static int indexTable[16] = {
    -1, -1, -1, -1, 2, 4, 6, 8,
    -1, -1, -1, -1, 2, 4, 6, 8,
};

static int stepsizeTable[89] = {
    7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
    19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
    50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
    130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
    337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
    876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
    2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
    5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
    15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
};

#define CHARP(cp, i) ((signed char *)(cp+i))
#define SHORTP(cp, i) ((short *)(cp+i))
#define LONGP(cp, i) ((Py_Int32 *)(cp+i))
"""

C_SOURCE = _AUDIOOP_C_MODULE + r"""
#include <math.h>

static const int maxvals[] = {0, 0x7F, 0x7FFF, 0x7FFFFF, 0x7FFFFFFF};
/* -1 trick is needed on Windows to support -0x80000000 without a warning */
static const int minvals[] = {0, -0x80, -0x8000, -0x800000, -0x7FFFFFFF-1};

static int
fbound(double val, double minval, double maxval)
{
    if (val > maxval) {
        val = maxval;
    }
    else if (val < minval + 1.0) {
        val = minval;
    }

    /* Round towards minus infinity (-inf) */
    val = floor(val);

    /* Cast double to integer: round towards zero */
    return (int)val;
}

static int
gcd(int a, int b)
{
    while (b > 0) {
        int tmp = a % b;
        a = b;
        b = tmp;
    }
    return a;
}

int ratecv(char* rv, char* cp, size_t len, int size,
           int nchannels, int inrate, int outrate,
           int* state_d, int* prev_i, int* cur_i,
           int weightA, int weightB)
{
    char *ncp = rv;
    int d, chan;

    /* divide inrate and outrate by their greatest common divisor */
    d = gcd(inrate, outrate);
    inrate /= d;
    outrate /= d;
    /* divide weightA and weightB by their greatest common divisor */
    d = gcd(weightA, weightB);
    weightA /= d;
    weightA /= d;

    d = *state_d;

    for (;;) {
        while (d < 0) {
            if (len == 0) {
                *state_d = d;
                return ncp - rv;
            }
            for (chan = 0; chan < nchannels; chan++) {
                prev_i[chan] = cur_i[chan];
                if (size == 1)
                    cur_i[chan] = ((int)*CHARP(cp, 0)) << 24;
                else if (size == 2)
                    cur_i[chan] = ((int)*SHORTP(cp, 0)) << 16;
                else if (size == 4)
                    cur_i[chan] = (int)*LONGP(cp, 0);
                cp += size;
                /* implements a simple digital filter */
                cur_i[chan] = (int)(
                    ((double)weightA * (double)cur_i[chan] +
                     (double)weightB * (double)prev_i[chan]) /
                    ((double)weightA + (double)weightB));
            }
            len--;
            d += outrate;
        }
        while (d >= 0) {
            for (chan = 0; chan < nchannels; chan++) {
                int cur_o;
                cur_o = (int)(((double)prev_i[chan] * (double)d +
                         (double)cur_i[chan] * (double)(outrate - d)) /
                    (double)outrate);
                if (size == 1)
                    *CHARP(ncp, 0) = (signed char)(cur_o >> 24);
                else if (size == 2)
                    *SHORTP(ncp, 0) = (short)(cur_o >> 16);
                else if (size == 4)
                    *LONGP(ncp, 0) = (Py_Int32)(cur_o);
                ncp += size;
            }
            d -= inrate;
        }
    }
}

void tostereo(char* rv, char* cp, size_t len, int size,
              double fac1, double fac2)
{
    int val1, val2, val = 0;
    double fval, maxval, minval;
    char *ncp = rv;
    int i;

    maxval = (double) maxvals[size];
    minval = (double) minvals[size];

    for ( i=0; i < len; i += size ) {
        if ( size == 1 )      val = (int)*CHARP(cp, i);
        else if ( size == 2 ) val = (int)*SHORTP(cp, i);
        else if ( size == 4 ) val = (int)*LONGP(cp, i);

        fval = (double)val * fac1;
        val1 = fbound(fval, minval, maxval);

        fval = (double)val * fac2;
        val2 = fbound(fval, minval, maxval);

        if ( size == 1 )      *CHARP(ncp, i*2) = (signed char)val1;
        else if ( size == 2 ) *SHORTP(ncp, i*2) = (short)val1;
        else if ( size == 4 ) *LONGP(ncp, i*2) = (Py_Int32)val1;

        if ( size == 1 )      *CHARP(ncp, i*2+1) = (signed char)val2;
        else if ( size == 2 ) *SHORTP(ncp, i*2+2) = (short)val2;
        else if ( size == 4 ) *LONGP(ncp, i*2+4) = (Py_Int32)val2;
    }
}

void add(char* rv, char* cp1, char* cp2, size_t len1, int size)
{
    int i;
    int val1 = 0, val2 = 0, minval, maxval, newval;
    char* ncp = rv;

    maxval = maxvals[size];
    minval = minvals[size];

    for ( i=0; i < len1; i += size ) {
        if ( size == 1 )      val1 = (int)*CHARP(cp1, i);
        else if ( size == 2 ) val1 = (int)*SHORTP(cp1, i);
        else if ( size == 4 ) val1 = (int)*LONGP(cp1, i);

        if ( size == 1 )      val2 = (int)*CHARP(cp2, i);
        else if ( size == 2 ) val2 = (int)*SHORTP(cp2, i);
        else if ( size == 4 ) val2 = (int)*LONGP(cp2, i);

        if (size < 4) {
            newval = val1 + val2;
            /* truncate in case of overflow */
            if (newval > maxval)
                newval = maxval;
            else if (newval < minval)
                newval = minval;
        }
        else {
            double fval = (double)val1 + (double)val2;
            /* truncate in case of overflow */
            newval = fbound(fval, minval, maxval);
        }

        if ( size == 1 )      *CHARP(ncp, i) = (signed char)newval;
        else if ( size == 2 ) *SHORTP(ncp, i) = (short)newval;
        else if ( size == 4 ) *LONGP(ncp, i) = (Py_Int32)newval;
    }
}

void lin2adcpm(unsigned char* ncp, unsigned char* cp, size_t len,
               size_t size, int* state)
{
    int step, outputbuffer = 0, bufferstep;
    int val = 0;
    int diff, vpdiff, sign, delta;
    size_t i;
    int valpred = state[0];
    int index = state[1];

    step = stepsizeTable[index];
    bufferstep = 1;

    for ( i=0; i < len; i += size ) {
        if ( size == 1 )      val = ((int)*CHARP(cp, i)) << 8;
        else if ( size == 2 ) val = (int)*SHORTP(cp, i);
        else if ( size == 4 ) val = ((int)*LONGP(cp, i)) >> 16;

        /* Step 1 - compute difference with previous value */
        diff = val - valpred;
        sign = (diff < 0) ? 8 : 0;
        if ( sign ) diff = (-diff);

        /* Step 2 - Divide and clamp */
        /* Note:
        ** This code *approximately* computes:
        **    delta = diff*4/step;
        **    vpdiff = (delta+0.5)*step/4;
        ** but in shift step bits are dropped. The net result of this
        ** is that even if you have fast mul/div hardware you cannot
        ** put it to good use since the fixup would be too expensive.
        */
        delta = 0;
        vpdiff = (step >> 3);

        if ( diff >= step ) {
            delta = 4;
            diff -= step;
            vpdiff += step;
        }
        step >>= 1;
        if ( diff >= step  ) {
            delta |= 2;
            diff -= step;
            vpdiff += step;
        }
        step >>= 1;
        if ( diff >= step ) {
            delta |= 1;
            vpdiff += step;
        }

        /* Step 3 - Update previous value */
        if ( sign )
            valpred -= vpdiff;
        else
            valpred += vpdiff;

        /* Step 4 - Clamp previous value to 16 bits */
        if ( valpred > 32767 )
            valpred = 32767;
        else if ( valpred < -32768 )
            valpred = -32768;

        /* Step 5 - Assemble value, update index and step values */
        delta |= sign;

        index += indexTable[delta];
        if ( index < 0 ) index = 0;
        if ( index > 88 ) index = 88;
        step = stepsizeTable[index];

        /* Step 6 - Output value */
        if ( bufferstep ) {
            outputbuffer = (delta << 4) & 0xf0;
        } else {
            *ncp++ = (delta & 0x0f) | outputbuffer;
        }
        bufferstep = !bufferstep;
    }
    state[0] = valpred;
    state[1] = index;
}


void adcpm2lin(unsigned char* ncp, unsigned char* cp, size_t len,
               size_t size, int* state)
{
    int step, inputbuffer = 0, bufferstep;
    int val = 0;
    int diff, vpdiff, sign, delta;
    size_t i;
    int valpred = state[0];
    int index = state[1];

    step = stepsizeTable[index];
    bufferstep = 0;

    for ( i=0; i < len*size*2; i += size ) {
        /* Step 1 - get the delta value and compute next index */
        if ( bufferstep ) {
            delta = inputbuffer & 0xf;
        } else {
            inputbuffer = *cp++;
            delta = (inputbuffer >> 4) & 0xf;
        }

        bufferstep = !bufferstep;

        /* Step 2 - Find new index value (for later) */
        index += indexTable[delta];
        if ( index < 0 ) index = 0;
        if ( index > 88 ) index = 88;

        /* Step 3 - Separate sign and magnitude */
        sign = delta & 8;
        delta = delta & 7;

        /* Step 4 - Compute difference and new predicted value */
        /*
        ** Computes 'vpdiff = (delta+0.5)*step/4', but see comment
        ** in adpcm_coder.
        */
        vpdiff = step >> 3;
        if ( delta & 4 ) vpdiff += step;
        if ( delta & 2 ) vpdiff += step>>1;
        if ( delta & 1 ) vpdiff += step>>2;

        if ( sign )
            valpred -= vpdiff;
        else
            valpred += vpdiff;

        /* Step 5 - clamp output value */
        if ( valpred > 32767 )
            valpred = 32767;
        else if ( valpred < -32768 )
            valpred = -32768;

        /* Step 6 - Update step value */
        step = stepsizeTable[index];

        /* Step 6 - Output value */
        if ( size == 1 ) *CHARP(ncp, i) = (signed char)(valpred >> 8);
        else if ( size == 2 ) *SHORTP(ncp, i) = (short)(valpred);
        else if ( size == 4 ) *LONGP(ncp, i) = (Py_Int32)(valpred<<16);
    }
    state[0] = valpred;
    state[1] = index;
}
"""

ffi.set_source("_audioop_cffi", C_SOURCE)

if __name__ == "__main__":
    ffi.compile()